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The design of electric machines is a multivariable and multimodal problem which requires much time to find the optimal design 

results. To address this problem, we propose a novel multimodal optimization algorithm using a subgroup concept (MS), which uses a 

grey wolf optimizer, a subgroup, a Kriging surrogate model, a scout, and an adaptive coefficient. In multivariable and multimodal 

design problems, the proposed novel algorithm is more rapid, exact, and reliable compared to the conventional algorithms such as 

niching genetic algorithm (NGA) and auto tuning NGA. The validity of the proposed method was confirmed via test functions. For the 

verification of the application to electric machines, interior permanent-magnet synchronous motors for electric vehicles was designed 

using the proposed algorithm. 

 
Index Terms—Grey wolf optimizer (GWO), IPMSM, Kriging, multimodal optimization, surrogate model. 

 

I. INTRODUCTION 

HE finite-element method (FEM) is generally used for the 

design of electric machines, as it can precisely calculate 

the performances of electric machines with complex structures 

and easily take into account magnetic saturation effects [1]. 

However, the FEM is too time-consuming directly to 

determine many design variables via a trial-and-error method. 

Therefore, optimization algorithms are widely used in order to 

reduce the computational costs significantly by reducing the 

number of objective function evaluations by  the FEM [2]-[4]. 

Most electric machine designs are multivariable and 

multimodal optimization problems given that there are many 

design variables and conflicting objectives. Conventional 

metaheuristic algorithms have been improved in terms of their 

ability to solve multimodal optimization problems such as a 

niching genetic algorithm (NGA) [3], [4]. More appropriate 

and feasible designs of electric machines can be obtained via 

these improved algorithms, which provide diverse solutions to 

multimodal optimization problems. 

The recently proposed grey wolf optimizer (GWO) is a 

metaheuristic algorithm inspired grey wolves [5]. This 

algorithm mimics the social hierarchy and hunting mechanism 

of grey wolves. The competitive performance of the GWO 

was verified using various test functions. However, the GWO 

cannot guarantee to find local optima as well as a global 

optimum, since solutions of that tend to converge into a global 

optimum. In other words, it is impossible for the GWO to 

solve multimodal and multiobjective optimization problems. 

To solve these problems of the conventional GWO, we 

propose a novel multimodal optimization algorithm by using 

the GWO, a subgroup concept, a Kriging surrogate model, 

scouts for diverse solutions, and an adaptive coefficient for 

balance between exploration and exploitation. Hence, we 

termed the proposed algorithm as a multimodal optimization 

algorithm using a subgroup concept (MS) in this paper. The 

performances as the convergence speed, accuracy, and the 

reliability of the proposed MS is verified through the 

application into mathematical test functions and a practical 

electric machine.  

II. THE PROPOSED MS 

The proposed MS utilizes subgroups determined by a 

Kriging surrogate model in order to effectively search for 

multiple solutions and achieve a rapid convergence. The 

proposed algorithm can secure the diversity of solutions by 

using scouts directly exploring to non-search area instead of 

inefficient methods such as mutation in a genetic algorithm 

and a mathematical model of obstacles to approaching prey in 

the GWO. Moreover, an adaptive coefficient is used in the MS 

for balancing exploration and exploitation effectively, which is 

defined considering a degree of convergence. The flowchart of 

the MS is shown in Fig. 1 and the detailed procedure of that is 

explained in Table I. 
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where t indicates the current iteration, A  is a coefficient 

vector, pX  is the position vector of the prey, X  is the 

position vector of a grey wolf. 1r  is random vectors in [-1,1]. 
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where X , X  , and X  are the position vectors of α, β, and 

δ. 
TABLE I 

PROCEDURE OF THE PROPOSED MS 

 

Step 1 : Definition of basic parameters 
The population number and the range of the design variables is set, and 

a is initialized to 2. a is an adaptive coefficient balancing exploration 

and exploitation, which is updated considering a degree of convergence 
in step 7. 
 

Step 2 : Generation of initial samples 

The initial samples are randomly generated in the predefined search 

region and their objective function values are calculated. 
 

Step 3 : Construction of Kriging surrogate model 

The Kriging interpolation method is known for a method which can 

efficiently approximate complex functions [6]. The performances of 
optimization algorithms can be improved by utilizing the Kriging 

surrogate model properly. In this step, the surrogate model is obtained in 

the predefined search region using the all sample data calculated in 
advance. 
 

Step 4 : Determination of peaks and subgoups 

The local peaks are estimated using the Kriging surrogate model, of 
which the objective function values of all peaks is calculated. All peaks 

have their respective subregions in the form of a circle. Each radius of 

circles is determined by using the distance between each peak and the 
nearest peak of the peak. Furthermore, the radius of a peak is set larger 

when the objective function value of a peak is better than that of the 

nearest peak of the peak. Each subgroup is composed of all populations 
in each subregion. 
 

Step 5 : Determination of social hierarchy in main group and subgoups 

The social hierarchy are composed of four types in this case alpha (α), 

beta (β), delta (δ), and omega (ω). The main group is composed of all of 
the conventional populations and the updated peaks. The hierarchy of 

the main group can be simply modeled by regarding the fittest solution, 

the second best solution, and the third best solution in the main group as 
the global α, β, and δ, respectively. In each subgroup, the best, the 

second, and the third best solutions in the conventional populations and 

the updated peak are determined as the local α, β, and δ. 
 

Step 6 : Update of populations by encircling prey, hunting, and scouting 

Encircling prey can be modeled by using (1)-(3) modified from [5]. In 

hunting stage, it is assumed that the hunt is guided by α, β, and δ and 
they have better information about location of prey. Therefore, the final 

position of a solution can be defined using (4)-(7) modified from [5]. 

The procedures of encircling prey and hunting are conducted using the 
local α, β, and δ in each subgroup respectively. The populations not 

included in any subgroups are updated using the global α, β, and δ. 

There is no random factor except for A  in order to minimize inefficient 

searches for exploration. Instead, the simple and effective exploration is 

conducted by scouts. The scouts is defined as grey wolves exploring 

non-search areas in this paper. The scouts perform an important role to 
secure the diversity of solutions, of which locations are determined in 

the sparse region.  
 

Step 7 : Update of a 
a of the conventional GWO is defined by iteration without 

consideration of a degree of convergence, although a is a crucial factor 

to balance exploration and exploitation. In the MS, a is properly 
determined by a degree of convergence, which is calculated by using 

the differences between values evaluated by the Kriging method and 

real values in all populations updated in the previous step. 
 

Step 8 : Convergence check 
If the termination criteria is met, the procedure is finished. Otherwise, 

repeat the procedure from step 3. 
 

III. NUMERICAL TESTS AND RESULTS 

The superiority of the proposed algorithm in terms of the 

optimization time and accuracy was confirmed by comparing 

the proposed method with the NGA and an auto-tuning NGA 

which are generally used for the multivariable and multimodal 

problem. Furthermore an interior permanent-magnet 

synchronous motor for an electric vehicle is optimally 

designed using the proposed algorithm to validate the 

possibility of its application to a practical machine. Fig. 2 

shows a graph obtained using the MS. Detailed results will be 

presented in the full paper.  

IV. CONCLUSION 

In this paper, a novel optimization algorithm MS is 

proposed for a multivariable and multimodal problem which 

requires much time to find the optimal design result. It is 

remarkable in the aspect that the performance of the proposed 

MS algorithm is superior to the widely used conventional 

algorithms such as a NGA and an auto tuning NGA in the 

aspect of the convergence speed, accuracy, and reliability. 

Hence, this research is noteworthy in that the rapid and 

reliable optimization of an electric machine is possible using 

the proposed MS algorithm. 
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Fig. 1. Flowchart of MS. 

 

 
Fig. 2. Optimization result for a test function. 


